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FOREWORD

The work reported herein was done at the request of the Atomic
Energy Commission (AEC) for the Martin Company, Baltimore Division,
under Program Area 821D, AEC Order No. AL-67-255.

The test results presented herein were obtained by AROQO, Inc. (a
subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator
of the Arnold Engineering Development Center (AEDC), Air Force Sys-
tems Command (AFSC), Arnold Air Force Station, Tennessee, under
Contract AF40(600)-1200, The tests were conducted from Qctober 10 to
November 10, 1967, under ARO Project No. VB1841, and the manuscript
was submitted for publication on January 11, 1968,
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ABSTRACT

Selected test results are presented to show the effect of aspect ratio
on the aerodynamic and heat-transfer characteristics of the SNAP-29
fuel block which is a flat plate configuration with cylindrical edges.
Static-force and moment and heat-transfer data were measured on models
having aspect ratios of 1.7 and 3.2 at angles of attack from 0 to 80 deg
and yaw rotations from 0 to 90 deg. The tests were conducted at Mach
number 8 and Reynolds numbers from 0. 22 to 0. 48 million, based on
model length,
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SECTION |
INTRODUCTION

The fuel block of the SNAP-29 polonium fueled radioisotopic gener-
ator is a flat plate with rounded edges and corners, the edge shape having
been determined from previous testing on a low aspect ratio (approxi-
mately 1. 1) configuration, Ref. 1. It was assumed in the previous tests
as in the present tests that the fuel block would be ejected from the gen-
erator unit prior to re-entry and only the fuel block would be designed
for intact re-entry, It is necessary, therefore, that the aerodynamic
and heat-transfer characteristics of the fuel block be known so that tra-
jectory and aeroheating predictions can be made. Following the previcus
tests and selection of the edge shape, other configurations of different
aspect ratio are being considered. Two of these configurations, desig-
nated Mg and M3 and having aspect ratios of 3.2 and 1.7, respectively,
were investigated in the present tests to provide part of the necessary
information required for selection of an optimum fuel block configura-
tion for SNAP-29,

The tests were conducted in the 50-in, hyperajonic tunnel (Gas Dy-
namic Wind Tunnel, Hypersonic (B}) of the von Karman Gas Dynamics
Facility {VKF), AEDC, at Mach number 8 and Reynoclds numbers based
on model length of 0. 26 and 0. 46 million for the force and moment tests
and 0,22 and 0, 40 million for the heat-transfer tests. Model rotation
angles (yaw rotations) from 0 to 90 deg were investigated at angles of
attack from 0 tc 90 deg.

SECTION II
APPARATUS

2.1 WIND TUNNEL

Tunnel B is a continuous, closed-circuit, variable density wind tun-
nel with an axisymmetric contoured nozzle and a 50-in, -diam test section,
The tunnel operates at a nominal Mach number of 6 or 8 at stagnation pres-
sures from 20 to 280 and from 50 to 800 psia, respectively, at stagnation
temperatures up to 1350°R. The model may be injected into the tunnel for
a test run and then retracted for model cooling or model changes without
interrupting the tunnel flow. A description of the tunnel may be found in
Ref. 2.
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2.2 MODELS AND SUPPORT

The SNAP-29 fuel block is basically a flat plate with rounded edges
and corners, Four force models and one heat-transfer model were
supplied by the Martin Company, and the basic dimensions of each model
are shown in Fig, 1 along with the full-scale dimensions. The model
aspect ratios were 3.2 and 1. 7 which comprised configurations Mg and
Mg, respectively.

The force models and four balance-model adapters (provided to obtain
the desired angle-of-attack range) were constructed of 321 stainless steel
and are shown in Fig. 2a. The 0,74-scale Mo model was tested at
angles of attack from -7 to 35 deg using the 8- and 22, 5-deg adapters,

The 0. 74-scale M3 model was tested only with the 8-deg adapter up to
23-deg angle of attack because of tunnel blockage. Angles of attack
from 30 to 90 deg were obtained with the 0. 50-scale Mg and 0. 37-scale
M3 models by using the 45- and 75-deg adapters. Model rotation angles
from O to 90 deg in 15-deg increments were accomplished by simply
rotating each model on the balance-model adapter about the model geom-
etric center. The balance was installed inside the 8-deg adapter; how-
ever, the 22.5-, 45-, and 75-deg adapters required a sting-mounted
windshield (Fig. 2a) to shield the balance from the airstream. The
0.74-scale Mg model is shown installed in the tunnel in Fig. 2b. The
model force and moment reference system is shown in Fig. 2¢.

The 0.40-scale heat-transfer model is shown in Fig, 3. The basic
model simulated configuration M9, and the M3 configuration was formed
by adding an extension, which was not instrumented, to the basic model
(see Fig. 3a). The basic model was instrumented with 94 Chromel®-
Alumel® thermocouples. Both the basic model and the extension were
of thin skin construction, nominally 0,037 in. thick, and were fabricated
from Inconel 600. A phenolic honeycomb, which had holes enlarged to
0.25-in, diameter at each thermocouple location to minimize conduction
losses, was bonded to the model skin to provide additional support for
the flattened areas of the model., The model was attached to an adjust-
able sting which provided prebends of 15, 45, and 75 deg relative to
the tunnel centerline, These prebends with the +15-deg travel of the
model support system provided an angle-of-attack range from 0 to
90 deg. Model rotation angles of 0, -45, -60,2, -72.5, -90, -180,
-240, 2, and -270 deg were obtained by rotating the model at the sting-
to-model attachment. Rotations of -180, -240.2, and -270 deg were
necessary in order to locate the instrumented portion of configuration
M3 where the noninstrumented portion was located on rotations of 0,
-60,2, and -20 deg, respectively.



AEDC-TR-68-32

2.3 INSTRUMENTATION
2.3.1 Force

Model forces and moments were measured with a six-component,
moment-type, strain-gage balance supplied and calibrated by VKF.
Before the fest, combined balance static loadings were applied, simu-
lating the model loading range anticipated during the test. The uncer-
tainties listed below correspond to the differences between the applied
loads and the values calculated by the final data reduction balance
equations.

Design Maximum
Balance Component Load Static Loads Uncertainties
Normal force, 1b 1200 + 860 0. 40
Pitching moment, in. -1b 1680 +240 +1. 20
Side force, 1b £200 + 50 +0. 35
Yawing moment, in. -1b +680 + 73 +1. 50
Rolling moment, in. ~lb +100 + 50 10, 45
Axial force, 1b 50 100 +0. 35

2.3.2 Heat Transfer

The heat-transfer model surface temperature was measured with
thermocouples welded into holes in the model surface. Thermocouple
outputs were recorded on magnetic tape, at a rate of 20 times per
second, from the start of the injection cycle until about 2 sec after the
meodel reached the tunnel centerline, From calibrations of typical
thermocouple wires and a knowledge of the system sensitivity and noise
level, the precision of the VKF temperature recerding system is esti-
mated to have been 10, 2°R/sec or +2 percent, whichever was greater.

Model flow field schlieren photographs were obtained during all
tests. Figure 4 shows typical photographs.

SECTION I
FPROCEDURE

3.1 TEST CONDITIONS

The tests were conductied at the following conditions:
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M, Rey x 10-6 Po, Psia To, °R 4. Ppsia Sty R.

7. 86 0,26 70 1165 0. 35 -
7. 86 0. 46 70 1165 0.35 -
7. 89 0.26 120 1205 0.59 -
7. 90 0.46 150 1230 0.73 -
7.89 0.22 120 1205 0.59 0.0067
7. 89 0.40 120 1205 0.59 0.0067

A complete test summary is presented in Table 1.

3.2 DATA REDUCTION

The heat-transfer data were reduced using the temperature-time
histories from the thermocouples and the equation

dT,,
di

q = whc

where
525. 3 1b/ft3

b = measured skin thickness at each thermocouple

{nominally 0, 0030 ft)
c=1,4861x 102 + 3,2470 x 104 Ty - 3.8572 x 10~ 7 T2
+1,6815 x 1071073, Btu/1b-°R

This equation neglects conduction and radiation losses. The values of w,
b, and c were supplied by the Martin Company. Stanton numbers were
computed using the equation

i
ot =
5 Peabce (Hy — Hy}

and these Stanton numbers were ratioed toc a theoretical Stanton number,
Sty g » computed from the Fay and Riddell theory (Ref. 3) for the stag-
nation point heating of a sphere having a 1-ft radius. The heat-transfer
data presented were evaluated at the time the model reached tunnel
centerline,

Measured leading edge heat-transfer values were compared with a
theoretical Stanton number computed for the stagnation line on an un-
swept cylinder using the theory of Ref. 3 to obtain the stagnation point
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heating rate on a sphere having the same radius as the cylinder,
0.0167 ft, and the equation

(E‘S)cv]mdrr = 0.729 ((.l")spheu-

where the constant, 0,729, was obtained from Ref. 4, p. 300, Eq.
{8.3.20). Theoretical flat plate Stanton numbers for ¢« = 0 were com-
puted using the method of Ref, 5.

SECTION 1V
RESULTS AND DISCUSSION

The aerodynamic characteristics of configuration My, aspect
ratio = 3.2, are presented in Fig. 5 for model rotation angles of 0, 30,
45, 60, and 90 deg. It should be noted that the force and moment refer-
ence system used for the data presented is independent of the model
rotation angle, 7. Increasing 4 resulted in decreasing Cn which was
first observed near 40<« <75 deg; however, increasing ¥ to 90 deg
resulted in Cyy being definitely lower at all angles of attack up to
approximately 80 deg (Fig. 5a). Large increases in Cy, at angles of
attack from approximately 25 to 40 deg, depending on 7y, are attributed
to a center-of-pressure shift caused by bow shock detachment which was
discussed in Ref. 1. The peak values of C,, increased with v resulting
in increased stability at the trim angle of attack, o = 90 deg. Indicated
trim angles of attack slightly less than 90 deg are attributed to a possible
misalignment between the model and balance {a misalignment of 0.015 in.
would account for the discrepancies shown), The M2 configuration was
longitudinally unstable for all values of ¥ from o« = 0 to o = 60 deg where
it became stable about the o = 90 deg trim angle, Systernatic decreases
in CAt occurred with increased o and increasing v as expected. Direc-
tional and lateral stability data for configuration Mg, Fig. 5b, show
that negative Cy values were produced for model rotations between 0 and
90 deg with the largest value occurring at ¢ = 0 and v = 30 deg. Cy was
relatively insensitive to variations in @ and 4 with only slight variations
occurring near 35 < ¢ < 65 deg. It should be noted here that Cy and Cp
in Fig. 5b and Ca, in Fig. 5a are dominated by the model leading edge
and variations in these coefficients with v are basically leading edge
sweep effects. Rather large variations in Cg were measured, the largest
occurring at ¥ = 30 deg., These rolling moments are believed to be caused
by the center-of-pressure shift mentioned previously, With the model
rotated to an angle between 0 and 90 deg, the center of pressure would
shift diagonally across the model as angle of attack varied, inducing a
rolling moment; whereas at ¥ = 0 and 90 deg, it would shift along the
model centerline affecting only the pitching moment.

W
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The effects of aspect ratio on the model aerodynamic characteristics
are illustrated in Fig. 6 for v = 0 and 60 deg. This figure shows that
similar trends were obtained on both Ms (AR = 3. 2) and M3 (AR = 1. 7)
with the largest coefficients generally occurring on the higher aspect
ratio configuration. It should be noted that evaluation of the effects of
varying aspect ratio is somewhat obscured because the model planform
area was used as the reference area and some coefficients (CAt, Cy.
and C,) are dominated by the leading edge as previously mentioned.

Heat-transfer distributions along the longitudinal centerline of con-
figuration Mg are presented in Fig. 7 for model rotations of 0, -495, and
-90 deg and angles of attack from 0 to 90 deg. A stagnation line value was
computed for the leading edge at o = 0 using Refs. 3 and 4 as discussed in
Section 3, 2. The measured value is shown to be approximately 25 per-
cent lower than predicted. This difference is attributed to conduction
losses. Measurements at ¢« = 0 on the model flat surface are shown to be
in good agreement with predicted flat plate values.

The effect of aspect ratio variation on the heat-transfer distributions
along the longitudinal centerline is illustrated in Fig. 8 for v = 0 and
-90 deg at angles of attack of 0 and 70 deg. These data show that similar
results were obtained on both configurations.
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Fig. 1 Model Geometry
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Configuration Iiz
a -
bl

b. Model Installation Photograph

At a = 0and 4 = 0 the
model planform area is
parallel, and the span is
normal to the free stream.

c. Force and Moment Reference System

Fig. 2 Concluded
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y = 5 deg a = 20 deg
8-deg Balance-Model 22 .5-deg Balance-Model
Adapter, 0.74 Scale Adapter, 0.74 Scale

y = 37 deg a = 90 deg
45-deg Balance-Model 75-deg Balance-Model
Adapter, 0.50 Scale Adapter, 0.50 Scale

Fig. 4 Typical Schlieren Photographs, Configuration My Force Models, y = 0
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Fig. 5 Aeradynamic Characteristics of Canfiguration My (AR = 3.2)
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Fig. 6 Effect af Aspect Ratio on Aerodynamic Characteristics
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Fig. 7 Heat-Transfer Distributions along the Longitudinal Center-

line of Configuration My, y = 0, -45, and -90 deg
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TABLE |
TEST SUMMARY

Force Tests

Model Reg x 10-6 Balance-Model Adapter, deg a-Range, deg ¥, deg

0.74 Scale Mg 0. 326 8 -7 to 23 0, 15, 30, 45, 60, 75, 60
22,56 7.5 to 37,5
0,74 Scale M3z  0.4% 8 -7 to 23
0. 50 Scale Ma 0,26 45 30 to B0
75 60 to 90 0, 15, 30, 60, 90
0,37 Scale M3 0. 46 45 30 to 60 a, 15, 30, 45, 64, 75, 90
} 75 60 to 90
Heat-Transfer Tests

Model Reg x 10-6 o, deg ¥, deg

0,40 Scale Mjy 0,22 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90 0, -45, -_'72..5, -80

0.40 Scale Mg g, 40

0, 5, 10, 20, 30, 40, 50, 60, 70

0, -60.2, -90, -180

0, 5, 10, 20, 30, 40, 50, 60, 70, 75, 80, 85 -240
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on medels having aspect ratios of 1.7 and 3.2 at angles of attack from
0 to 90 deg and yaw rotations from O to 90 deg. The tests were con-
ducted at Mach number 8 and Reynolds numbers from 0.22 to 0.46
million, based on model length,
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